ARcenso
: a Package Born From Chaos
, Powered by Community
useR! 2025
August 9, 2025
Sociologist
Learned R through the R community
Code with a social perspective
Population Statistics Analyst at INDEC (ONS) in Argentina.
rOpenSci Champion, Cohort 2023–2024
Helps understand the population’s characteristics and needs.
Is essential for designing effective public policies (social, economic, and territorial planning).
Serves as a vital component of academic, social, and market research.
Forms the foundation for evidence-based decision-making.
Argentina conducted its national census in 2022, the country’s largest statistical operation. Starting in 2023, we began publishing the final results, to which I contributed.
In addition to presenting the data, we had to edit and generate hundreds of Excel tables using R, which was a very manual process.
We had to make many Excel tables. We didn’t know if they were useful or even usable. During that process, I thought this should be a package in R, but the idea remained up in the air until rOpenSci Champions appeared and took shape.
This is a programme that promotes leadership in open science and free software. It offers mentoring and peer support, particularly for individuals from historically underrepresented groups.
Develop an R data package that makes available the official national population census data of Argentina, produced by the National Institute of Statistics and Censuses (INDEC), covering the period from 1970 to 2022. The data are homogenized, organized, and ready to use. The package provides open access to these datasets, facilitating their use by the public, researchers, and decision-makers.
Historical census results for 1970, 1980, 1991, 2001, 2010 and 2022 in Argentina are available in different formats through physical books, PDFs, excel files, and REDATAM outputs, without having a unified system or format that would allow working with the data from these six census periods as a database.
This fragmentation limits data accessibility, interoperability, and reuse, especially for users working within the R environment.
From excel tables to ordered tables in R
Six censuses to organize, one package to build
Findable → Six national censuses (1970–2022) in one R package, clearly versioned.
Accessible → Open, homogenized datasets with docs & metadata.
Interoperable → Tidy tables ready to integrate with other R data.
Reusable → Standardized codes, open license, reproducible structures.
Stage | Census years | Geographic level |
---|---|---|
1 | 1970 | National and 24 jurisdictions |
1980 | National level | |
2 | 1991 and 2001 | National level |
3 | 2010 | National level |
4 | 2022 | National level |
5 | 1980 and 1991 | 24 jurisdictions |
6 | 2001 and 2010 | 24 jurisdictions |
7 | 2022 | 24 jurisdictions |
Download: Automated web scraping to collect census tables from official sources.
Select: Listed, classified, and extracted relevant files and metadata (census year, geography, topics).
Transform: Converted Excel tables into tidy, standardized datasets using base R.
Function development: Built R functions to access, manipulate, and visualize the data efficiently.
Package creation: Integrated datasets and functions into the ARcenso package for easy use and reproducibility.
Version control: Used Git and GitHub for tracking changes, collaboration, and release management.
get_census()
get tables
get_census( year = 1970,
topic = "CONDICIONES HABITACIONALES",
geolvl = "Total del país")
#> $c70_total_del_pais_poblacion_c18
#> regimen_de_tenencia hogares personas cuartos
#> 1 Propietario 3553250 13778700 11197900
#> 2 Inquilino o arrendatario 1380950 4692800 3305350
#> 3 Ocupante en relación de dependencia 353300 1402500 880050
#> 4 Ocupante gratuito 575650 2271150 1196500
#> 5 En otro carácter 192950 816350 419800
#>
#> $c70_total_del_pais_poblacion_c20
#> tama?o_hogar regimen_tenencia hogares
#> 1 De 1 persona Total 615900
#> 2 De 1 persona Propietario 255900
#> 3 De 1 persona Inquilino o arrendatario 199350
#> 4 De 1 persona Ocupante con relación de dependencia 52600
#> 5 De 1 persona Ocupante gratuito 82100
#> 6 De 1 persona Otro 25950
#> 7 De 2 personas Total 1125250
#> 8 De 2 personas Propietario 652950
#> 9 De 2 personas Inquilino o arrendatario 302400
#> 10 De 2 personas Ocupante con relación de dependencia 49250
#> 11 De 2 personas Ocupante gratuito 91300
#> 12 De 2 personas Otro 29350
#> 13 De 3 personas Total 1230600
#> 14 De 3 personas Propietario 744800
#> 15 De 3 personas Inquilino o arrendatario 290650
#> 16 De 3 personas Ocupante con relación de dependencia 62150
#> 17 De 3 personas Ocupante gratuito 103200
#> 18 De 3 personas Otro 29800
#> 19 De 4 personas Total 1255000
#> 20 De 4 personas Propietario 787900
#> 21 De 4 personas Inquilino o arrendatario 266000
#> 22 De 4 personas Ocupante con relación de dependencia 65650
#> 23 De 4 personas Ocupante gratuito 102850
#> 24 De 4 personas Otro 32600
#> 25 De 5 personas Total 818550
#> 26 De 5 personas Propietario 516100
#> 27 De 5 personas Inquilino o arrendatario 157500
#> 28 De 5 personas Ocupante con relación de dependencia 48200
#> 29 De 5 personas Ocupante gratuito 71550
#> 30 De 5 personas Otro 25200
#> 31 De 6 personas Total 443250
#> 32 De 6 personas Propietario 272000
#> 33 De 6 personas Inquilino o arrendatario 80000
#> 34 De 6 personas Ocupante con relación de dependencia 29000
#> 35 De 6 personas Ocupante gratuito 45750
#> 36 De 6 personas Otro 16500
#> 37 De 7 personas Total 276750
#> 38 De 7 personas Propietario 163400
#> 39 De 7 personas Inquilino o arrendatario 44950
#> 40 De 7 personas Ocupante con relación de dependencia 19950
#> 41 De 7 personas Ocupante gratuito 35200
#> 42 De 7 personas Otro 13250
#> 43 De 8 personas Total 121450
#> 44 De 8 personas Propietario 70600
#> 45 De 8 personas Inquilino o arrendatario 18250
#> 46 De 8 personas Ocupante con relación de dependencia 10050
#> 47 De 8 personas Ocupante gratuito 16250
#> 48 De 8 personas Otro 6300
#> 49 De 9 personas Total 76000
#> 50 De 9 personas Propietario 40950
#> 51 De 9 personas Inquilino o arrendatario 9400
#> 52 De 9 personas Ocupante con relación de dependencia 7150
#> 53 De 9 personas Ocupante gratuito 12900
#> 54 De 9 personas Otro 5600
#> 55 De 10 y más Total 93350
#> 56 De 10 y más Propietario 48650
#> 57 De 10 y más Inquilino o arrendatario 12450
#> 58 De 10 y más Ocupante con relación de dependencia 9300
#> 59 De 10 y más Ocupante gratuito 14550
#> 60 De 10 y más Otro 8400
check_repository()
report of available tables
check_repository( year = 1970,
topic = "CONDICIONES HABITACIONALES",
geolvl = "Total del país")
#> Archivo
#> 1 c70_total_del_pais_poblacion_c18
#> 2 c70_total_del_pais_poblacion_c20
#> Titulo
#> 1 Cuadro 18. Total del país. Hogares particulares, personas y cuartos, por régimen de tenencia. Año 1970
#> 2 Cuadro 20. Total del país. Hogares particulares, por tamaño del hogar según régimen de tenencia. Año 1970
ARcenso()
shinyapp for consulting
Improve and expand the package documentation
Continue the phased roadmap
Reach rOpenSci peer review standards
Increase package adoption and visibility
Seek institutional support and funding
ARcenso is a citizen-driven initiative that emerged from our professional experience working with census data.
It was born from the need for accessible, tidy data among data users, and inspired by the collaborative spirit of the R community.
With the support of the rOpenSci Champions Program, cohort 2023–2024, this project is led by Andrea Gómez Vargas, main developer, alongside Emanuel Ciardullo as co-developer and Luis D. Verde as mentor. Tamara Derner designed the project hex logo, and Ariana Bardauil created the Quarto slide theme.
Behind every open-source tool, there’s a community lifting each other up.
ARcenso has been presented at local R chapters, universities, and regional conferences.
What began as a personal need became a shared resource.
I started out searching for solutions.
I ended up building one.