Data from Argentina’s Population Census
Overview
This project was supported by the rOpenSci Champions Program 2023-2024, with Andrea Gomez Vargas as the main developer and Emanuel Ciardullo as co-author.
ARcenso is a package under development designed to democratize access to official data from Argentina’s National Population Censuses produced by the National Institute of Statistics and Census (INDEC).
Currently, historical census results (1970, 1980, 1991, 2001, 2010, and 2022) are scattered across physical books, PDFs, Excel files, or closed systems like REDATAM. This fragmentation makes it difficult to perform historical analysis or serial comparisons.
ARcenso aims to make this data available, homogenized, and ready to use in R.
Note: The available data is being added in stages. Currently, the package is in Stage 1.
Data Availability Roadmap
| Stage | Census years | Geographic level | Notes |
|---|---|---|---|
| 1 | 1970 | National and 24 jurisdictions | First available census data |
| 1980 | National level | Jurisdiction-level data not available | |
| 2 | 1991 and 2001 | National level | Coming soon |
| 3 | 2010 | National level | Coming soon |
| 4 | 2022 | National level | Coming soon |
| 5 | 1980 and 1991 | 24 jurisdictions | Coming soon |
| 6 | 2001 and 2010 | 24 jurisdictions | Coming soon |
| 7 | 2022 | 24 jurisdictions | Coming soon |
Installation
You can install the development version of arcenso from GitHub with:
# install.packages("remotes")
# if you do not have remotes installed
remotes::install_github("SoyAndrea/arcenso")Main functions
arcenso provides three core tools:
arcenso_gui(): Launches a Shiny app to query and visualize available tables interactively.check_repository(): Reports the tables currently available in the package based on search criteria.get_census(): Retrieves the actual datasets as a list of data frames.
Usage
First, load the library:
Interactive Exploration (Shiny App)
The easiest way to discover available data is through the built-in interface. You can browse tables, filter by geographic level, and copy the exact Table ID you need.
To launch the application locally, run:
# Launch the interactive Shiny application
arcenso_gui()Look at the interactive interface in action:

Exploring the Repository
Before downloading data, you can check which tables are available for a specific year, topic, and geographic level using check_repository():
# Check available tables for 1970 related to "educacion"
check_repository(
year = 1970,
topic = "educacion"
)
#> # A tibble: 75 × 3
#> id_cuadro cod_geo titulo
#> <chr> <chr> <chr>
#> 1 1970_00_educacion_01 00 Cuadro 7. Total del país. Población de 10 y más…
#> 2 1970_00_educacion_02 00 Cuadro 8. Total del país. Población de 5 y más …
#> 3 1970_00_educacion_03 00 Cuadro 9. Total del país. Población de 5 y más …
#> 4 1970_02_educacion_01 02 Cuadro 3. Capital Federal. Población de 10 y má…
#> 5 1970_02_educacion_02 02 Cuadro 4. Capital Federal. Población de 5 y más…
#> 6 1970_02_educacion_03 02 Cuadro 5. Capital Federal. Población de 5 y más…
#> 7 1970_06_educacion_01 06 Cuadro 3. Provincia de Buenos Aires. Población …
#> 8 1970_06_educacion_02 06 Cuadro 4. Provincia de Buenos Aires. Población …
#> 9 1970_06_educacion_03 06 Cuadro 5. Provincia de Buenos Aires. Población …
#> 10 1970_10_educacion_01 10 Cuadro 3. Provincia de Catamarca. Población de …
#> # ℹ 65 more rowsAccessing Census Data
Once you have identified the table you need (either by ID or topic), use get_census() to retrieve the data.
Get specific table by ID (Recommended)
This is the most robust method for reproducible research.
# Download specific table (e.g., Structure of Population, National level)
census_data <- get_census(
year = 1970,
id = "1970_00_estructura_01"
)
census_data
#> $`1970_00_estructura_01`
#> # A tibble: 54 × 3
#> grupo_de_edad sexo poblacion
#> <chr> <chr> <chr>
#> 1 0-4 Total 2355300
#> 2 0-4 Varones 1196950
#> 3 0-4 Mujeres 1158350
#> 4 5-9 Total 2297000
#> 5 5-9 Varones 1163050
#> 6 5-9 Mujeres 1133950
#> 7 10-14 Total 2201150
#> 8 10-14 Varones 1114300
#> 9 10-14 Mujeres 1086850
#> 10 15-19 Total 2098700
#> # ℹ 44 more rowsSearch by topic and geography
You can also filter directly while requesting data.
# Download 1970 housing data for Tierra del Fuego (geo_code "94")
table_hab_94 <- get_census(
year = 1970,
topic = "habitacional",
geo_code = "94"
)
table_hab_94
#> $`1970_94_habitacional_01`
#> # A tibble: 4 × 4
#> regimen_de_tenencia hogares personas cuartos
#> <chr> <chr> <chr> <chr>
#> 1 Inquilino o arrendatario 784 2772 2132
#> 2 Ocupante en relación de dependencia 713 2388 2321
#> 3 Ocupante gratuito 122 353 377
#> 4 En otro carácter 39 154 107Reference Dictionaries
Don’t know the geographic code for a province? Want to see all available topics? The package includes built-in datasets for quick reference.
Geographic Codes (geo_code)
Use geo_metadata to look up the INDEC codes required for filtering.
# View the full table of geographic codes
head(arcenso::geo_metadata)
#> # A tibble: 6 × 4
#> cod_geo nombre_geo nombre_corto iso_3166_2
#> <chr> <fct> <chr> <chr>
#> 1 00 Total del País Total AR
#> 2 02 Ciudad Autónoma de Buenos Aires CABA AR-C
#> 3 06 Buenos Aires Buenos Aires AR-B
#> 4 10 Catamarca Catamarca AR-K
#> 5 14 Córdoba Córdoba AR-X
#> 6 18 Corrientes Corrientes AR-WAvailable Topics (census_metadata)
You can list all unique topics available in the census metadata using standard R commands:
# List all unique topics
unique(arcenso::census_metadata$tema)
#> [1] estructura fecundidad educacion conyugal actividad
#> [6] migracion composicion habitacional vivienda
#> 9 Levels: estructura fecundidad educacion conyugal actividad ... viviendaAcknowledgments
This package was developed as part of the rOpenSci Champions Program (2023-2024).
We would like to express our special gratitude to:
Yanina Bellini Saibene (Program Leader) for her constant support, accompaniment, and guidance in structuring the project workflow.
Luis D. Verde Arregoitia for his invaluable mentorship, patience, and guidance throughout the development process.
Tamara Giselle Derner for designing the hex sticker and finding the perfect symbol to give the package a true national identity.
The rOpenSci community for fostering diverse participation, and the wider R community for their interest and company along the way.
Citation
If you use ARcenso in your research or projects, please cite it as follows:
Gomez Vargas, A., & Ciardullo, E. (2026). arcenso: Data from Argentina’s Population Census. R package version 0.1.0. Available at: https://soyandrea.github.io/arcenso/
You can also get the BibTeX entry by running:
citation("arcenso")@Manual{,
title = {arcenso: Data from Argentina's Population Census},
author = {Andrea Gomez Vargas <andrea.gomezv11@gmail.com> [aut, cre] (ORCID: <https://orcid.org/0009-0007-8745-3967>)},
year = {2026},
note = {R package version 0.2.1},
url = {https://soyandrea.github.io/arcenso/, https://doi.org/10.5281/zenodo.18378026},
}Contributing
We welcome contributions in both English and Spanish. Please see our Contributing Guidelines for more details.
Code of Conduct
Please note that the arcenso project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.
